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Abstract

This paper introduces a method for constructing copula functions by combining the ideas
of distortion and convex sum, named Distorted Mix Method. The method mixes different
copulas with distorted margins to construct new copula functions, and it enables us to model
the dependence structure of risks by handling central and tail parts separately. By applying the
method we can modify the tail dependence of a given copula to any desired level measured
by tail dependence function and tail dependence coefficients of marginal distributions. As an
application, a tight bound for asymptotic Value-at-Risk of order statistics is obtained by using
the method. An empirical study shows that copulas constructed by this method fit the empirical
data of SPX 500 Index and FTSE 100 Index very well in both central and tail parts.

Keywords: copula; Distorted Mix Method; distortion function; tail dependence coefficient;
tail dependence function.

1 Introduction
Copula method can be applied for describing the full dependence structure of random vectors.

Essentially, a copula function is a joint distribution with all uniform [0,1] margins. It is known that
the copula function provides a complete description of dependence structure among random vari-
ables by uniting marginal distributions via Sklar Theorem. Let F(x1, . . . ,xd) be a d-dimensional
joint distribution with marginal distributions F1(x1), . . . ,Fd(xd). Sklar Theorem states that there
exists a copula function C satisfying

F(x1, . . . ,xd) =C(F1(x1), . . . ,Fd(xd)) .
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See Joe (1997) and Nelsen (2006) for more introduction about copula functions. In fact, now
copula method becomes more and more important in quantitative finance and risk management,
see McNeil et al. (2005) and Denuit et al. (2005).

Gaussian copula and Archimedean copula are important copula families applied in finance and
insurance. Proposed by Li (2000), Gaussian copula has been widely used in credit risk model-
ing, and it is also criticized after the subprime mortgage crisis for its incapacity to capture high
correlation in tails (Donnelly and Embrechts, 2010). As an alternative for Gaussian copula, Stu-
dent T-copula is capable of capturing high correlation in tails, but unfortunately Student T-copula
can not describe the asymmetry between the lower and upper tails. In high-dimensional case,
Archimedean copula is very popular for its explicit expression and its convenience for sampling.
However, most of the Archimedean families have few parameters, which makes the copulas ex-
changeable and less flexible. Therefore, it will be important to construct copula functions sharing
the good properties of several copula families.

Fundamental transformation-based copula construction methods include convex sum, ordinal
sum and shuffle of copula (Nelsen, 2006). Recently, the distortion function has been applied for
constructing copula functions. A continuous function D(x) from [0,1] to [0,1] is called a distortion
function if D is increasing and D(0) = 0,D(1) = 1. Yaari (1987) firstly applied the distortion
function in dual theory of choice under risk, and Wang (1996) defined Wang’s premium principle
by using distortion functions. Genest and Rivest (2001), Klement et al. (2005), Durante and Sempi
(2005) and Durante et al. (2010) considered transformations from a bivariate copula C(u1,u2)
to another one Cϕ = ϕ−1(C(ϕ(u1),ϕ(u2))), where ϕ is a distortion function. Morillas (2005)
extended this idea to multivariate copulas. In addition, Liebscher (2008) presented two general
construction schemes based on product of copulas and generalized Archimedean family. Fischer
and Köck (2012) unified the above transformation-based methods.

In this paper, we will introduce a method called Distorted Mix Method (DMM) to construct
copulas by applying distortion functions. The idea of DMM is based on the convex sum method,
while the copula margins are modified by some distortion functions. By applying the distortion
functions, we can model dependence structure by handling central and tail parts separately. More
precisely, DMM enables us to modify the tail parts of a given copula to any desired pattern. Our
theoretical discussion will focus on two tail dependence measures: tail dependence coefficients of
marginal distributions and tail dependence function defined in Klüppelberg et al. (2008) and Joe et
al. (2010). Through choosing suitable distortion functions, DMM can be applied to construct cop-
ulas being close to a given copula, and its tail dependence can reach any desired level. Empirical
results will also be given to show that a modified Gaussian copula constructed by DMM performs
significantly better than Gaussian copulas in the tail parts.

This paper is organized as follows. In Section 2, we introduce our definition of DMM, and
theoretical results about tail behavior of the constructed copulas are provided. In Section 3, we
apply DMM to change tail dependence of a given copula, in which we focus on two tail measures:
tail dependence function and tail dependence coefficients of marginal distributions. Empirical
results are presented in Section 4 and conclusion is given in Section 5. Some proofs are provided
in the appendix.
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2 Distorted Mix Method

2.1 Definition for Distorted Mix Method
Given integer m≥ 2 and the corresponding weights αi > 0, i = 1,2, . . . ,m with ∑

m
i=1 αi = 1, let

the distortion functions Di j, i = 1, . . . ,m, j = 1, . . . ,d satisfy the following assumption:

• Assumption A: ∑
m
i=1 αiDi j(x) = x for any j = 1, . . . ,d.

Then based on copula functions Ci, i = 1, . . . ,m and the distortion functions Di j, i = 1, . . . ,m, j =
1, . . . ,d, we define a function C̃(u1, . . . ,ud) as

C̃(u1, . . . ,ud) =
m

∑
i=1

αi ·Ci (Di1(u1), . . . ,Did(ud)) . (1)

The above definition combines the ideas of distortion and convex sum, so we name this method
Distorted Mix Method (DMM).

Next theorem will show that the function C̃(u1, . . . ,ud) is a copula function under Assumption
A, regardless of the choice of copulas, distortion functions and corresponding weights. The proof
will be given in the appendix.

Theorem 1. Assume that Assumption A holds. Then the function C̃(u1, . . . ,ud) defined in (1) is a
copula function. Moreover, for i = 1, . . . ,m,

sup
(u1,...,ud)∈[0,1]d

∣∣C̃(u1, . . . ,ud)−Ci(u1, . . . ,ud)
∣∣≤min{1,(1−αi)(d +1)} (2)

and ˆ
[0,1]d

∣∣C̃(u1, . . . ,ud)−Ci(u1, . . . ,ud)
∣∣du1 . . .dud ≤min{1,(1−αi)(d/2+1)}. (3)

In the next we call the copula C̃ a DM copula, and we call copulas Ci, i = 1, . . . ,m the com-
ponent copulas. Essentially, a DM copula is a mixture of different component copulas with mar-
gins modified by some distortion functions. Notice that for each fixed i, the choice of the com-
ponent copula Ci is irrelevant to the choice of weight αi and corresponding distortion functions
Di j, j = 1, . . . ,d.

Intuitively, as the weight αi gets larger, the DM copula C̃ will get closer to the component
copula Ci. The above inequalities (2) and (3) show that the DM copula C̃ is close to Ci when αi is
close to 1.

We can explain DM copula from the following two viewpoints. The first is that DMM is a
generalization of the convex sum method. Letting Di j(u) = u, C̃(u1, . . . ,ud) can be expressed as a
convex sum

C̃(u1, . . . ,ud) =
m

∑
i=1

αi ·Ci (u1, . . . ,ud) .

Compared with the convex sum method, DMM uses a technique of distortion to make each com-
ponent copula focus on a particular aspect. The second viewpoint is that DM copula can be derived
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from convex sum of distribution functions. Let H and Hi be d-dimensional continuous distributions
satisfying

H(x1, . . . ,xd) =
m

∑
i=1

αi ·Hi(x1, . . . ,xd).

Note that H and Hi can also be expressed as

H(x1, . . . ,xd) =C(F1(x1), . . . ,Fd(xd)), Hi(x1, . . . ,xd) =Ci(Fi1(x1), . . . ,Fid(xd)),

where C,Ci are copula functions, and Fi,Fi j are marginal distributions. Then the above copula
function C can be written as

C(u1, . . . ,ud) =
m

∑
i=1

αi ·Ci
(
Fi1
(
F−1

1 (u1)
)
, . . . ,Fid

(
F−1

d (ud)
))

,

which shows that the distortion function Di j can be regarded as a transformation between the
margins

Di j(x) = Fi j

(
F−1

j (x)
)
.

In the next, we provide a factor illustration to explain DMM from the view of random variables.
Based on this view, we can get a better understanding of DM copula and its distortion functions.

Proposition 1. Consider a common factor Z distributing discretely as P(Z = i) = αi for i =
1, . . . ,m. For each fixed i, the random variables U1, . . . ,Ud satisfy that P(U j ≤ x |Z = i) = Di j(x),
and their conditional copula under Z = i is denoted as Ci(u1, . . . ,ud). Then if Assumption A
holds, the joint distribution of U1, . . . ,Ud is the DM copula defined in (1).

The proof of the proposition is obvious and omitted. The above proposition provides a clear
probability structure for DM copulas. It shows that DM copulas can describe different dependence
structures in different market circumstances, which is quite reasonable in finance (Longin and
Solnik, 2001).

Owing to the factor illustration of DM copulas, the procedure of sampling a DM copula can be
divided into two parts: first sample each component copula Ci, then compute the inverse functions
D−1

i j . More precisely, to sample a random vector U = (U1, . . . ,Ud) whose joint distribution is C̃
defined in equation (1), we can work on it according to the following steps:

1. Sample a random variable Z distributing discretely as P(Z = i) = αi for i = 1, . . . ,m;

2. Sample a random vector V = (V1, . . . ,Vd) whose joint distribution function is CZ;

3. Let U j = D−1
Z j (Vj).

Then U = (U1, . . . ,Ud) is a sample of C̃. This algorithm provides a sampling scheme based on each
component copula, which avoids sampling directly based on the expression of C̃. Therefore, if all
the component copulas are easy to sample, it will also be easy to sample the DM copula.

Besides the advantage in simulation, the DM copula inherits many good properties from its
component copulas. For instance, if all the component copulas Ci and the distortion functions Di j
have continuous density functions, then the DM copula also has a continuous density function.

In most cases of the following discussion, we assume that the distortion functions in the same
component copula are identical. Precisely, let Di := Di1 = Di2 = . . . = Did for each i, then As-
sumption A is simplified as
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• Assumption B: ∑
m
i=1 αiDi(x) = x.

Under Assumption B, the DM copula is simplified as

C̃(u1, . . . ,ud) =
m

∑
i=1

αi ·Ci (Di(u1), . . . ,Di(ud)) . (4)

Remark 1. If the distortion functions in the same vector component are identical, i.e., D1 j = D2 j =
. . .= Dm j for all j, then Assumption A implies that all the distortion functions are simply reduced
to Di j(x) = x. In this case, the DM copula becomes the convex sum of the component copulas.

2.2 Examples of DM copulas
As is well known, Gaussian copula can not describe heavy tail correlation of financial variables.

Next we construct a more flexible copula family by using DMM. The intuitive idea is to modify a
Gaussian copula into a new copula with Archimedean tails.

Example 1. Let C1 be a d-dimensional Gaussian copula CN
Σ

with correlation matrix Σ, C2 be a
Clayton copula CCl

θ
and C3 be a Gumbel copula CGu

ψ , i.e.,

CCl
θ (u1, . . . ,ud) =

(
d

∑
j=1

u−θ

j −d +1

)− 1
θ

, CGu
ψ (u1, . . . ,ud) = exp

−[ d

∑
j=1

(
− lnu j

)ψ

] 1
ψ


and

CN
Σ (u1, . . . ,ud) = ΦΣ

(
Φ
−1(u1), . . . ,Φ

−1(ud)
)
,

where θ ∈ (0,∞), ψ ∈ [1,∞), Φ is the univariate Gaussian distribution function and ΦΣ is the
multivariate Gaussian distribution function with correlation matrix Σ.

Let α ∈ (0, 1
2), α1 = 1−2α , α2 = α3 = α , and choose the distortion functions

D2(x) =
x−αx2

α +(1−2α)x
, D3(x) =

αx2

α +(1−2α)(1− x)
, D1(x) =

x−αD2(x)−αD3(x)
1−2α

. (5)

It is easy to check ∑
3
i=1 αiDi(x) = x, so Assumption B holds. According to Theorem 1, the DM

copula defined in (4) is close to the Gaussian copula CN
Σ

when α is small. Furthermore, the numer-
ical results in Figure 2 show that the DM copula performs like a Clayton copula in the lower tail,
and like a Gumbel copula in the upper tail. Here we only provide an intuitive explanation, and the
theoretical results will be given in the next subsection.

For the above DM copula, we consider its factor illustration in Proposition 1. Suppose there
is a common factor Z taking values in {1,2,3}. According to Proposition 1, let (U1, . . . ,Ud) be
a sample of the DM copula, then the conditional distribution functions of U j, j = 1, . . . ,d under
Z = i are all equal to Di(x). Figure 1 shows the conditional distribution functions D1,D2,D3
and their density functions D′1,D

′
2,D

′
3 when α = 0.02. The density functions D′2,D

′
3 imply that

U j, j = 1, . . . ,d are more likely to take small values under Z = 2 and take large values under Z = 3.
On the other hand, Proposition 1 says that the conditional copula of U1, . . . ,Ud under Z = 2 is the
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Figure 1: Subplot (a) shows the distortion functions D1(x),D2(x),D3(x) defined in (5) when α = 0.02.
Subplot (b) and (c) show the density functions D′1,D

′
2,D

′
3 when α = 0.02. The dash dotted, dashed and solid

lines are D1,D2,D3 and their density functions respectively.

Clayton copula CCl
θ

, so the lower tail of the DM copula performs like a Clayton copula. Similarly,
the upper tail of the DM copula performs like a Gumbel copula.

Figure 2 shows density contours of bivariate meta-distributions with different bivariate copulas
and standard Gaussian margins. The DM copulas in Figure 2(d)-Figure 2(f) are defined in Example
1. Here the component Gaussian copula CN

ρ has correlation ρ = 0.3, the component Clayton copula
CCl

θ
has θ = 0.7565, and the component Gumbel copula CGu

ψ has ψ = 1.7095. Figure 2(g)-Figure
2(i) display the cases of convex sum copula

CCs(u1,u2) = (1−2α) ·CN
ρ (u1,u2)+α ·CCl

θ (u1,u2)+α ·CGu
ψ (u1,u2). (6)

Joe-Clayton copula in Figure 2(c) is defined in Joe (1997) as

CJc(u,v) = 1−
{

1−
[
(1− (1−u)ψ)−θ +(1− (1− v)ψ)−θ −1

]−1/θ
}1/ψ

, (7)

in which (θ ,ψ) ∈ (0,∞)× [1,∞). Here we choose θ = 0.7565 and ψ = 1.7095 as above.
Compared with the convex sum copulas, the DM copulas show greater flexibility. When α =

0.02 in Figure 2(d), the weight α1 of the component Gaussian copula is 0.96. Since α1 is close to
1, the DM copula is similar to the Gaussian copula, hence the contours in Figure 2(d) look like the
Gaussian density contours in Figure 2(a). However, the DM copula performs like a Clayton copula
in the lower tail and like a Gumbel copula in the upper tail, so the tail contours are sharper than
those of Gaussian density. As α increases, the weight of component Gaussian copula decreases,
and the density contours turn to be spindle-shaped. It is interesting that the density contours with
α = 0.25 in Figure 2(f) are remarkably similar to those of the Joe-Clayton copula in Figure 2(c).

In summary, this example shows roughly that DMM enables us to construct copulas by choos-
ing central and tail parts separately.

2.3 Tail dependence modification
Tail dependence coefficient (TDC) is the most popular measure of tail correlation. For a

d-dimensional copula C, its lower TDC is defined as λC = limu↓0C(u, . . . ,u)/u, provided the
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Figure 2: Density contours of meta-distributions with nine different bivariate copulas and standard Gaus-
sian margins. DM copulas are mixed by distorted Gaussian, Clayton and Gumbel copula with different α in
Example 1.

limit exists. And the upper TDC is defined as the lower TDC of its survival copula, i.e., λ ∗C =
limu↓0 Ĉ(u, . . . ,u)/u. Here the survival copula Ĉ of copula function C is defined as

Ĉ(u1,u2, . . . ,ud) = P(U1 ≥ 1−u1, . . . ,Ud ≥ 1−ud) ,

where U = (U1, . . . ,Ud) is a sample of C. Both the lower TDC and the upper TDC are in [0,1], and
large TDC corresponds to strong correlation in tail parts.

The concept of TDC can be extended to the concept of tail dependence function (TDF) de-
fined by Klüppelberg et al. (2008). Its copula version has been introduced by Joe et al. (2010) as
following. The lower TDF is defined as

b(w1, . . . ,wd;C) = lim
u↓0

C(w1u, . . . ,wdu))/u,

and the upper TDF is defined as

b∗(w1, . . . ,wd;C) = lim
u↓0

Ĉ(w1u, . . . ,wdu)/u,
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in which (w1, . . . ,wd) ∈ [0,∞)d . Notice that b(1, . . . ,1;C) = λC and b∗(1, . . . ,1;C) = λ ∗C . Unless
specially stated, we assume TDC and TDF always exist afterwards.

Next we extend Example 1 to a more general case. Our purpose is to replace the TDF of a
given copula, say C1. Assuming that we have a copula C2 at hand, we prefer the TDF of C2 to that
of C1. For this purpose we will construct a copula function C̃ close to C1 and its TDF is identical
to that of C2.

Proposition 2. Assume that C1,C2 are copulas and α1,α2,D1,D2 satisfy Assumption B, then the
distance between the DM copula

C̃(u1, . . . ,ud) = α1C1(D1(u1), . . . ,D1(ud))+α2C2(D2(u1), . . . ,D2(ud))

and C1 can be measured by (2) and (3) for i = 1. Furthermore,
(I) if α2D′2(0+) = 1, the DM copula C̃ and copula C2 have identical lower TDF;
(II) if α2D′2(1−) = 1, the DM copula C̃ and copula C2 have identical upper TDF.

Proof. Here we only prove the lower tail case in part (I), and the proof of the part (II) is similar.
For the d-dimensional copulas Ci, if D′i(0+) exists,

lim
u↓0

Ci(w1Di(u), . . . ,wdDi(u))
u

= lim
u↓0

Ci(w1Di(u), . . . ,wdDi(u))
Di(u)

· Di(u)
u

=D′i(0+) ·b(w1, . . . ,wd;Ci).

Owing to the Lipchitz property of copula function, for a small u we have

|Ci(w1Di(u), . . . ,wdDi(u))−Ci(Di(w1u), . . . ,Di(wdu))| ≤
d

∑
j=1

∣∣w jDi(u)−Di(w ju)
∣∣= o(u) .

By integrating the above two aspects, we have

lim
u↓0

Ci(Di(w1u), . . . ,Di(wdu))
u

= D′i(0+) ·b(w1, . . . ,wd;Ci), ∀(w1, . . . ,wd) ∈ [0,∞)d. (8)

Now we go back to the proof of Proposition 2. From α1D1(x)+α2D2(x) = x we know that
α1D′1(0+) = 0. Applying (8), we have

b(w1, . . . ,wd;C̃) =α1D′1(0+) ·b(w1, . . . ,wd;C1)+α2D′2(0+) ·b(w1, . . . ,wd;C2)

=b(w1, . . . ,wd;C2)

for any (w1, . . . ,wd) ∈ [0,∞)d .

Another idea is using other two different copulas to replace the lower and upper TDF respec-
tively, which makes the lower and upper TDF belong to different types.

Proposition 3. Assume Ci, i = 1,2,3 are copulas and αi,Di, i = 1,2,3 satisfy Assumption B, then
the distance between the DM copula

C̃(u1, . . . ,ud) =
3

∑
i=1

αiCi(Di(u1), . . . ,Di(ud)) (9)

and C1 can be measured by (2) and (3) for i = 1. Furthermore, if α2D′2(0+) = α3D′3(1−) = 1, the
DM copula C̃ has identical lower TDF with C2 and identical upper TDF with C3.
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The proof is similar and omitted. Next we provide three distortion function families

H p
α(x) = x1/α , He

α(x) = x2e(1/α−2)(x−1), H f
α,β (x) =

αβx2

αβ +(1−2α)
(
1− xβ

) , (10)

where α,β > 0. These distortion functions all have continuous derivatives on [0,1], and each
of them satisfies H ′(1) = 1/α and H ′(0) = 0. Notice that if H(x) is a distortion function, then
G(x) = 1−H(1−x) is also a distortion function satisfying G′(1) =H ′(0) and G′(0) =H ′(1). Thus
if we choose D2(x) = 1− (1− x)1/α2 for example, then α2D′2(0+) = 1. The above candidates of
distortion functions satisfy the conditions in Proposition 2 and Proposition 3.

Example 1 (continued). The distortion function in Example 1 is the case 1−D2(1−x) = D3(x) =
H f

α,1(x), so the DM copulas C̃ in Example 1 have identical lower TDF with Clayton copula and
identical upper TDF with Gumbel copula. Hence its lower and upper TDC satisfies(

λC̃,λ
∗
C̃

)
=
(

2−1/θ , 2−21/ψ

)
, (θ ,ψ) ∈ (0,∞)× [1,∞),

which implies (λC̃,λ
∗
C̃) can vary freely in (0,1)2. Thus all the DM copulas in Figure 2(d)-Figure

2(f) have the same lower TDC 2−1/0.7565 = 0.4 and the same upper TDC 2−21/1.7095 = 0.5.

Remark 2. From the discussion above, we can confirm the advantage of DMM over the convex
sum method. Although convex sum is widely used as a tool in time series empirical study (Chen
and Fan, 2006), the convex sum copula is incapable of letting its lower and upper TDC vary freely
in [0,1]2. More precisely, for the convex sum copula CCs defined in equation (6),we have λCCs ≤α2
and λ ∗CCs ≤ α3, thus λCCs +λ ∗CCs ≤ 1 follows.

2.4 On αi’s selection
In this subsection, we discuss on how to select the weights α1, . . . ,αm. For simplicity, we will

focus on the DM copula defined in the following form

C̃(u1, . . . ,ud) =
3

∑
i=1

αiCi(Di(u1), . . . ,Di(ud)), (11)

where the component copula C1 is intentionally chosen to capture the central part, and the copulas
C2 and C3 are chosen to capture the lower tail part and the upper tail part separately. In practice,
the copula C1 may belong to some commonly used copula family with improper tails, for example
Gaussian copulas, and C2,C3 belong to some copula families whose lower/upper TDC can vary
freely in [0,1]. As mentioned in Proposition 3, the DM copula in (11) can be applied to modify the
tail parts of copula C1 into the patterns of C2 and C3.

By the definition of DM copula, the distortion functions D1(u),D2(u),D3(u) and the weights
α1,α2,α3 ≥ 0 with α1 +α2 +α3 = 1 must satisfy the following condition

α1D1(u)+α2D2(u)+α3D3(u) = u, ∀u ∈ [0,1] (12)

On the other hand, the condition

α2D′2(0+) = α3D′3(1−) = 1 (13)
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is required to guarantee that the DM copula C̃ has identical lower TDF with C2 and identical upper
TDF with C3. Under the constraints of (12) and (13), the distortion functions D1(u),D2(u),D3(u)
are related to the parameters α1,α2 and α3. The distortion functions can be chosen from some
parametric families. Some distortion functions belonging to the power, exponential and fractional
families are provided in (10), in which the distortion functions are fully or partially determined
by the weight parameters. More generally, we can get other parametric distortion families by the
following method:

• Choose two parametric positive continuous functions h2,h3 with domain [0,1] satisfying
h2(x)+h3(x)≤ 1,x ∈ [0,1] and

h2(0) = 1,h2(1) = 0,
ˆ 1

0
h2(x)dx = α2,

h3(0) = 0,h3(1) = 1,
ˆ 1

0
h3(x)dx = α3;

• Set

D2(u) =
ˆ u

0

h2(x)
α2

dx, D3(u) =
ˆ u

0

h3(x)
α3

dx, D1(u) =
ˆ u

0

1−h2(x)−h3(x)
1−α2−α3

dx,

then D1(u),D2(u),D3(u) are distortion functions satisfying (12) and (13).

In the next, we discuss on how to estimate the parameters α1,α2 and α3.
For the purpose of our DM method, C̃ should be close to copula C1 and have the same tail

patterns as C2 and C3. Note that when (13) holds, the lower and upper TDFs of the DM copula C̃
are fully determined by the component copulas C2,C3 and independent to the values of the weights
α1,α2,α3. On the other hand, the difference between the DM copula C̃ and its component copula
C1 is highly related to the value of 1−α1. Precisely, from (2) we see that

sup
(u1,...,ud)∈[0,1]d

∣∣C̃(u1, . . . ,ud)−C1(u1, . . . ,ud)
∣∣≤ (1−α1)(d +1).

Thus in order that C̃ and C1 are close enough, one requirement is that 1−α1 = α2 +α3 is small.
Therefore, we can consider estimating α2,α3 in a small range, say [0,β ]. Thus, with given para-
metric distortion functions D1,D2 and D3 satisfying (12) and (13), statistical estimation can be
applied to estimate α2,α3 ∈ [0,β ] and other parameters.

The estimation of the DM copula can be implemented by the following procedure:

• Step 1: Use a parametric copula family to fit the data and estimate the parameters. Denote C1
as the fitted copula. If the copula C1 doesn’t fit the tail parts very well, we do the following
steps to modify C1 by DMM.

• Step 2: Choose the families of the component copulas C2,C3 and the distortion functions
D1,D2 and D3 to model the tail parts. Note that α1+α2+α3 = 1, and the distortion functions
are also related to α2 and α3. One can set the weights α2 and α3 as constants, or limit α2,α3
in a pre-set range.
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• Step 3: Calibrate the parameters in C2,C3,D1,D2 and D3 by Maximum Likelihood Estima-
tion (MLE). If the parameters α2,α3 are unknown before this step, then the estimates of the
two parameters can be obtained in this step.

In Section 4, we will apply the above procedure to analyze financial return data.

3 Constructing copulas with tail dependence by DMM
In this section, we will discuss on modifying a given copula to meet some specific tail require-

ments by applying DMM. Here we consider two tail measures: tail dependence function (TDF)
and tail dependence coefficients (TDC) of marginal distributions. We will only focus on the lower
tail in this section, and the results of upper tail are similar.

3.1 Constructing Copulas with preferred TDF
In Section 2.3, we used DMM to replace the TDF of a given copula. Of course doing such a

procedure has a certain premise that we have already chosen the alternative copula. If there is no
candidate, we can focus on TDF directly. In the following, we will discuss on constructing copula
functions with the objective TDF by DMM.

Joe et al. (2010) has discussed the properties of a TDF. They proved that a TDF b(w1, . . . ,wd;C)
must be a grounded d-increasing function with homogeneity of order 1. Precisely,

1. (grounded) b(w1, . . . ,wd;C) = 0 if there exists some wi = 0;
2. (d-increasing) ∑

2
i1=1 . . .∑

2
id=1(−1)i1+...+id b(w(i1)

1 , . . . ,w(id)
d ;C)≥ 0 for w(1)

i ≤w(2)
i , i= 1, . . . ,d;

3. (homogeneity of order 1) b(λw1, . . . ,λwd;C) = λ ·b(w1, . . . ,wd;C) for any λ ≥ 0.
Next we will give the necessary and sufficient conditions for a function being a TDF, then we will
construct copulas with any given TDF by DMM.

Theorem 2. (I) Function B is a TDF, i.e., there exists a d-dimensional copula whose TDF equals
B, if and only if B satisfies all the following conditions:

(a) B is a grounded and d-increasing function with homogeneity of order 1.
(b) B is Lipschitz continuous with parameter 1, i.e., |B(w1, . . . ,wd)−B(v1, . . . ,vd)| ≤∑

d
i=1 |wi− vi|.

(II) Assume that function B is a TDF. For (u1, . . . ,ud) ∈ [0,1]d , we denote

CB(u1, . . . ,ud) =

B(u1, . . . ,ud), if B(1, . . . ,1) = 1;

B(u1, . . . ,ud)+
∏

d
i=1(ui−Bi(ui))

(1−B(1,...,1))d−1 , otherwise,
(14)

where Bi(x) = B(x1, . . . ,xd)|xi=x&x j=1 ,∀ j 6=i, then CB(u1, . . . ,ud) in [0,1]d is a copula function. And
for any given copula C1, the TDF of the DM copula

C̃(u1,u2, . . . ,ud) = (1−α)C1(D1(u1), . . . ,D1(ud))+αCB(D2(u1), . . . ,D2(ud)) (15)

equals B when distortion functions D1,D2 satisfy (1−α)D1(x)+αD2(x) = x for x ∈ [0,1] and
αD′2(0+) = 1. Furthermore, the distance between the DM copula C̃ and copula C1 can be mea-
sured by (2) and (3) for i = 1.
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Proof. The necessity of property (a) has been proved in Joe et al. (2010). The necessity of Lipschitz
property in (b) is inherited from the Lipschitz property of copula function. Next we prove the
sufficiency of these properties by constructing copulas with such TDF.

If B is a function satisfying the conditions in (a) and (b), we prove that CB is a copula function.
Firstly, we notice that B satisfies the Lipschitz property in (b), which implies Bi(x)−Bi(0)≤ x−0.
Hence Bi(x)≤ x for any i = 1, . . . ,d, so we obtain B(1, . . . ,1) = B1(1)≤ 1.

Case 1: B(1, . . . ,1) = 1. Then Bi(1) = 1 for i = 1, . . . ,d. The Lipschitz property implies
Bi(1)−Bi(x) ≤ 1− x for x ∈ [0,1], so Bi(x) ≥ x, x ∈ [0,1]. On the other hand, we have already
proved Bi(x)≤ x, so Bi(x) = x for x ∈ [0,1] and i = 1, . . . ,d. Therefore, B has uniform margins in
[0,1]. Combining with the assumption that B is d-increasing, we know B(u1, . . . ,ud), (u1, . . . ,ud)∈
[0,1]d is a copula function.

Case 2: B(1, . . . ,1) 6= 1. Then B(1, . . . ,1) < 1. Owing to the Lipschitz property, for any
0 ≤ x ≤ y ≤ 1 and i = 1, . . . ,d, we know Bi(y)− Bi(x) ≤ y− x, so x− Bi(x) is increasing for
i = 1, . . . ,d. Hence ∏

d
i=1 (ui−Bi(ui)) is d-increasing. Combining with the assumption that B is

d-increasing, we know CB is also d-increasing from (14). And it is easy to verify that CB has
uniform [0,1] margins, so CB is indeed a copula function.

Next we prove that the TDF of copula CB equals B. The case B(1, . . . ,1) = 1 is obvious. When
B(1, . . . ,1)< 1, we compute directly based on (14),

B(w1, . . . ,wd)≤ b(w1, . . . ,wd;CB)≤ B(w1, . . . ,wd)+ lim
u↓0

ud−1 = B(w1, . . . ,wd) ,

so b(w1, . . . ,wd;CB)=B(w1, . . . ,wd). For any given copula C1, we use CB as the component copula
in Proposition 2, and the conclusion of this theorem is a direct result of Proposition 2.

Remark 3. For any copula C1 and tail dependence function B, we can apply DMM to construct
DM copula C̃ such that C̃ is close enough to C1 and has TDF B. This result enables us to model
dependence structure by handling central and tail parts separately, which enlarges the choice of
multivariate copula families for application.

Notice that for any tail dependence function B,

B(w1, . . . ,wd)≤M(w1, . . . ,wd) := min{w1, . . . ,wd} .

As a specific case, B(w1, . . . ,wd) = M(w1, . . . ,wd) leads to the concept of tail comonotonicity
defined in Hua and Joe (2012). According to Theorem 2, we can use DMM to modify any given
copula C1 to be tail comonotonic. In this case, the component copula CB(u1, . . . ,ud) in (15) is
M(u1, . . . ,ud), hence the DM copula

C̃(u1, . . . ,ud) = (1−α) ·C1(D1(u1), . . . ,D1(ud))+α ·min{D2(u1), . . . ,D2(ud)}

is lower tail comonotonic when αD′2(0+) = 1. Furthermore, the DM copula C̃ is close to C1 when
α is small.

3.2 Constructing copulas with preferred marginal TDC family
In this subsection, we will consider TDC of all the marginal distributions of a copula function.
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To begin with, we give some definitions and notations first. Let C be a d-dimensional copula
function and (U1, . . . ,Ud) be its sample. Denote D = {1, . . . ,d}. For any S ⊆ D, |S| ≥ 2, we
denote CS as the S-marginal copula of the copula function C, i.e., CS is the distribution function of
{Ui, i ∈ S}. And we denote b(wi, i ∈ S; CS) as the TDF of the marginal copula CS, where we define
b(wi;C{i}) = wi for i = 1, . . . ,d. From the above definitions, we know that

b(wi, i ∈ S;CS) = lim
u↓0

P(∩i∈S{Ui ≤ wiu})/u, ∀ S⊆ D, S 6= /0. (16)

By the definition of TDC, we know λCS = b(1, . . . ,1; CS). We call {λCS : S ⊆ D, |S| ≥ 2} as the
marginal TDC family of the copula C.

To consider the compatibility of marginal TDC family, we need to define some more funda-
mental limits as following

eS(w1, . . . ,wd;C) = lim
u↓0

P(∩i∈S{Ui ≤ wiu}∩ j/∈S {U j > w ju})/u, ∀ S⊆ D, S 6= /0. (17)

Comparing (16) with (17) and applying the inclusion and exclusion principle, we can obtain

b(wi, i ∈ S;CS) = ∑
S⊆J⊆D

eJ(w1, . . . ,wd;C), ∀ S⊆ D, S 6= /0 (18)

and
eS(w1, . . . ,wd;C) = ∑

S⊆J⊆D
(−1)|J|−|S|b(wi, i ∈ J;CJ), ∀ S⊆ D, S 6= /0. (19)

Next we provide the necessary and sufficient conditions for a set of numbers {βI : I ⊆D, |I| ≥
2} being a marginal TDC family of a copula function. And we will use DMM to construct copulas
with arbitrary compatible TDC family. In fact, we will give a more generalized result through the
concept of TDF.

Theorem 3. Fix (w1, . . . ,wd) ∈ [0,∞)d .
(I) For a group of numbers {βI : I ⊆D, |I| ≥ 2}, if there exists a d-dimensional copula C such that
b(wi, i ∈ I;CI) = βI for all I ⊆ D, |I| ≥ 2, then

µS :=
d

∑
i=1

wi ·1S={i}+ ∑
|I|≥2,S⊆I⊆D

(−1)|I|−|S|βI ≥ 0, ∀S⊆ D, S 6= /0. (20)

(II) Conversely, if µS ≥ 0 for any S⊆ D with S 6= /0, then the DM copula

C̃(u1, . . . ,ud) =
(

1− µ

κ

)
C(D1(u1), . . . ,Dd(ud))+ ∑

S⊆D,S 6= /0

µS

κ
C(S) (DS1(u1), . . . ,DSd(ud)) (21)

satisfies that b(wi, i ∈ I;C̃I) = βI for all I ⊆ D with |I| ≥ 2, where µ = ∑S 6= /0 µS, κ > (d +1)µ , the
component copula

C(S)(u1, . . . ,ud) =

(
min
i∈S

ui

)
·∏

j/∈S
u j, (22)

and distortion functions

Di(x) =
κx−wiD∗i (x)

κ−wi
and DSi(x) =

{
D∗i (x), i ∈ S,
Di(x), i /∈ S,
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for any i ∈ D and S⊆ D, S 6= /0, in which

D∗i (x) =

{
1− (1− x)

κ

wi , wi > 0;
x, wi = 0.

Furthermore, we have

sup
(u1,...,ud)∈[0,1]d

|C̃(u1, . . . ,ud)−C(u1, . . . ,ud)| ≤ µ(d +1)/κ. (23)

Proof. (I) Suppose there is a copula C such that b(wi, i ∈ I;CI) = βI for all I ⊆D, |I| ≥ 2. Compar-
ing (19) with (20) and applying the definition b(wi;C{i}) = wi, we obtain µS = eS(w1, . . . ,wd;C)≥
0 for any S⊆ D, S 6= /0.

(II) From (20) and the definition of µ , we know that κ ≥ µ ≥ µ{i} = wi for i = 1, . . . ,d, which
derives that Di and DSi are all distortion functions. And it is easy to verify that Assumption A
holds with respect to C̃. Thus according to Theorem 1, the function C̃ defined in (21) is indeed a
copula function.

Let I ⊆ D with |I| ≥ 2. As for the TDF of the I-marginal copula of C̃, we have

b(wi, i ∈ I;C̃I) = lim
u↓0

((
1− µ

κ

)
CI(Di(wiu), i ∈ I)+ ∑

S∈D,S 6= /0

µS

κ
C(S)

I (DSi(wiu), i ∈ I)

)
/u . (24)

For any i = 1, . . . ,d, we notice that limu↓0 Di(u)/u = D′i(0+) = 0, hence

lim
u↓0

CI(Di(wiu), i ∈ I)/u≤∑
i∈I

lim
u↓0

Di(wiu)/u = 0. (25)

On the other hand, it is easy to verify that limu↓0 D∗i (u)/u = κ . Therefore, we can derive

lim
u↓0

C(S)
I (DSi(wiu), i ∈ I)/u = lim

u↓0

(
min
i∈I∩S

D∗i (wiu) ∏
j∈I\S

Di(wiu)

)
/u =

{
κ, I ⊆ S;
0, I\S 6= /0.

(26)

Applying (25),(26) to (24) and combining with the definition of µS in (20), we obtain that for any
I ⊆ D, |I| ≥ 2,

b(wi, i ∈ I;C̃I) = ∑
I⊆S⊆D

µS

κ
·κ = ∑

I⊆S⊆D
µS = ∑

I⊆S⊆D
∑

S⊆J⊆D
(−1)|J|−|S|βJ

= ∑
I⊆J⊆D

βJ ∑
S: I⊆S⊆J

(−1)|J|−|S| = ∑
I⊆J⊆D

βJ ·1I=J = βI.

And the last inequality in (23) can be obtained from Theorem 1.

Recall that b(1, . . . ,1;CI) = λCI . Thus we can obtain the necessary and sufficient conditions for
a group of numbers {βI : I ⊆ D, |I| ≥ 2} being a marginal TDC family.

Corollary 1. For a group of numbers {βI : I ⊆ D, |I| ≥ 2}, there exists a d-dimensional copula C
such that λCI = βI for any I ⊆ D with |I| ≥ 2, if and only if

1|S|=1 + ∑
|I|≥2,S⊆I⊆D

(−1)|I|−|S|βI ≥ 0, ∀S⊆ D, S 6= /0. (27)
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Let us see the trivariate case as an example, and details of its proof is moved to the appendix.

Example 2. Let β123,β12,β23,β13 ∈ [0,1], there exists a trivariate copula C such that λC{1,2} = β12,
λC{2,3} = β23, λC{1,3} = β13 and λC{1,2,3} = β123 if and only if

max{0,β12 +β23 +β13−min{β12,β23,β13}−1} ≤ β123 ≤min{β12,β23,β13}. (28)

Theorem 3 shows that DMM enables us to construct copulas with arbitrary marginal TDC
family, which provides a theoretical tool for problems about the tail dependence structure. It
can be applied in risk management such as Value-at-Risk (VaR) modeling. VaR is the most
commonly used risk measure. VaR of a variable X at level α ∈ (0,1) is given by VaRα [X ] =
inf{x ∈ R : FX(x)≥ α}, see McNeil et al. (2005) for more introduction about VaR. In the next we
will apply the result of Theorem 3 to obtain a tight bound for asymptotic VaR of order statistics.
Order statistics is related to many structural products in finance (Hull and White, 2004), and distri-
butional bounds of order statistics can be found in Caraux and Gascuel (1992) and Rychlik (1995).
Next we discuss the best possible upper bounds of VaR under the framework of regular variation.
We call a random variable X varying regularly at ∞ with index −δ < 0 if its survival distribution
function F̄X satisfies that

lim
x→∞

F̄X(tx)/F̄X(x) = t−δ , ∀ t > 0 .

For random variables X1, . . . ,Xd , we denote the order statistics of X1, . . . ,Xd as X(1) ≥ . . .≥ X(d).

Theorem 4. Suppose that continuous random variable X varies regularly at ∞ with index−δ < 0,
and Xi has identical distribution with µi +σi ·X for i = 1, . . . ,d. Let 0 < σ1 ≤ σ2 ≤ . . .≤ σd , then
we have

limsup
α↓0

VaR1−α [X(k)]

VaR1−α [X ]
≤

(
min

1≤i≤k

d−k+i

∑
j=1

σ
δ
j /i

)1/δ

. (29)

Moreover, the bound in (29) is tight. And we can use DMM to construct the survival copula of
(X1, . . . ,Xd) to reach this bound.

The above theorem can be proved by applying Theorem 3. The detail of the proof will be given
in the appendix. Here we only provide the DM copula which reaches the bound.

We denote i∗ = argmini∈{1,...,k}∑
d−k+i
j=1 σδ

j /i and γ = ∑
d−k+i∗
j=1 σδ

j /i∗. Then we define

Ri =

{[
∑

i−1
j=1 σδ

j , ∑
i
j=1 σδ

j

)
(modγ), 1≤ i≤ d− k+ i∗;

[0,σδ
i ), d− k+ i∗ < i≤ d,

(30)

where the notation R = A(modγ), A ⊆ R means that R = {x ∈ [0,γ) : ∃ integer z s.t. x+ zγ ∈ A}.
In the appendix, we will prove if the survival copula of (X1, . . . ,Xd) equals the DM copula in (21)
with wi = σδ

i , i = 1, . . . ,d and

µS = ml

(⋂
i∈S Ri

⋂
j/∈S Rc

j

)
, ∀S⊆ D, S 6= /0, (31)

then the upper bound is obtained, here ml is the Lebesgue measure.
Notice that the bound in (29) is irrelevant to the shift parameters µi, since it is an asymptotic

result. In the following, some examples are given to illustrate the bound.
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Example 3. Let X be a continuous random variable varying regularly at ∞ with index −δ < 0.
(I) If σ1 = . . .= σd = 1, then for k = 1, . . . ,d,

max
Xi∼µi+σi·X

limsup
α↓0

VaR1−α [X(k)]

VaR1−α [X ]
=

(
d
k

)1/δ

.

(II) Let d = 3 and σ1 = 4, σ2 = 5, σ3 = 6, then

max
Xi∼µi+σi·X

limsup
α↓0

VaR1−α [X(2)]

VaR1−α [X ]
=


4+5+6

2 , δ = 1;(
42+52+62

2

)1/2
, δ = 2;(

43 +53)1/3
, δ = 3.

4 Empirical example
In this section, we will analyze daily log-return data (2000-2012) of S&P 500 Index and FTSE

100 Index (from Bloomberg database). We will fit the empirical data by DM copula to show that
the DM copula has significant advantages against Gaussian copula in the tail parts.

We estimate the marginal distributions empirically, and then use the Maximum Likelihood Es-
timation to estimate the copula parameters. Firstly, we convert the daily return data (RSPX

t ,RFT SE
t )

to pseudo-samples (Ut ,Vt) (Chen and Fan, 2006), i.e., the pseudo-samples are defined as

Ut =
rank

(
RSPX

t
)

n+1
=

1
n+1

n

∑
k=1

1RSPX
k ≤RSPX

t
, Vt =

rank
(
RFT SE

t
)

n+1
=

1
n+1

n

∑
k=1

1RFT SE
k ≤RFT SE

t
,

where n = 3211 is the length of the data. The empirical copula Cemp(u,v) is calculated by

Cemp(u,v) =
1
n

n

∑
k=1

1Uk≤u,Vk≤v.

Next we use (Ut ,Vt), t = 1, . . . ,3211 to estimate parametric copulas by Maximum Likelihood Es-
timation.

The pseudo-samples (Ut ,Vt) are shown in Figure 3(a), which likes a scatter plot of Gaussian
copula. The fitted Gaussian copula satisfies ρ̂ = 0.54. However, the fitted Gaussian copula CN

ρ̂
is

not able to fit the tail parts. As is well known, the lower and upper TDC of Gaussian copula are
both equal to zero. Hence in Figure 3(c), the value CN

ρ̂
(x,x)/x tends to 0 when x approaches 0,

while the empirical data is obviously correlated in the tail parts. In conclusion, Gaussian copula
fits the central part well but doesn’t fit the tail parts.

Next we use DMM to modify the tail parts of the fitted Gaussian copula. We choose Gaussian,
Clayton and Gumbel copula as the component copulas, and choose H f

α,β defined in equation (10)
as the distortion functions. According to Proposition 3, the DM copula

CDm
ϑ (u1,u2) =(1−α2−α3)CN

ρ (D(u1),D(u2))+α2CCl
θ

(
1−H f

α2,β2
(1−u1),1−H f

α2,β2
(1−u2)

)
+α3CGu

ψ

(
H f

α3,β3
(u1),H

f
α3,β3

(u2)
)

(32)
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Figure 3: (a) Pseudo-samples of daily log-return data (2000–2012) of S&P 500 and FTSE 100 In-
dex. (b) Contour lines of empirical copula and the fitted DM copula. Solid lines belong to the em-
pirical copula, and dotted lines belong to the fitted DM copula defined in (32) with parameter ϑ̂ =

(0.54,0.02,0.10,0.56,0.02,5.0,1.1). (c) The value C(u,u)/u of four copulas (u ∈ [0,0.1]). The fitted Gaus-
sian copula has correlation parameter 0.54. The fitted Student T-copula has correlation parameter 0.54, and
its freedom equals 2.7. (d) The value of Ĉ(u,u)/u, where Ĉ is the survival copula of corresponding copulas.

has identical lower TDF with Clayton copula CCl
θ

and identical upper TDF with Gumbel copula
CGu

ψ , where the parameter ϑ = (ρ,α2,β2,θ ,α3,β3,ψ) ∈ [0,1]× [0, 1
2)× (0,∞)× [0,∞)× [0, 1

2)×
(0,∞)× [1,∞) and D(x) = (x− α2 + α2H f

α2,β2
(1− x)− α3H f

α3,β3
(x))/(1−α2−α3). Since we

regard the DM copula CDm
ϑ

as the tail modified version of the fitted Gaussian copula CN
ρ̂

, we let
ρ = ρ̂ = 0.54.

We first set α2 =α3 = 0.02, and the other four parameters are estimated by MLE. The estimates
are ϑ̂ = (0.54,0.02,0.10,0.56,0.02,5.0,1.1). Since the weight of component Gaussian copula
α1 = 96%, the fitted DM copula CDm

ϑ̂
(u,v) is very close to the fitted Gaussian copula CN

ρ̂
(u,v).

Actually, the mean difference

ˆ 1

0

ˆ 1

0

∣∣∣CN
ρ̂
(u,v)−CDm

ϑ̂
(u,v)

∣∣∣dudv = 0.0034,
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Table 1: Results of Maximum Likelihood Estimation.
Parameter Estimate Std. error

α2 0.0131 0.0047
β2 0.1081 0.0123
θ 0.5594 0.0383
α3 0.0297 0.0151
β3 1.5354 0.0299
ψ 1.0856 0.0703

which is very small. However, as shown in Figure 3(c) and Figure 3(d), the DM copula CDm
ϑ̂

fits the
empirical data very well in the tail parts. Comparing with the fitted Student T-copula, DM copula
performs well both in the lower and upper tails. Therefore, DM copula shows a great flexibility in
the results above, since its lower and upper tails can be calibrated separately.

In the next, we redo the calibration by MLE to estimate the weight parameters α2,α3. Ac-
cording to the procedure in Section 2.4, we estimate the parameters ϑ = (ρ,α2,β2,θ ,α3,β3,ψ)
through the following steps.

• Step 1: We let ρ equal the correlation parameter of the fitted Gaussian copula, i.e ρ = ρ̂ =
0.54.

• Step 2: We expect sup(u,v)∈[0,1]2
∣∣∣CN

ρ̂
(u,v)−CDm

ϑ
(u,v)

∣∣∣ ≤ 0.3. From Theorem 1, we can set
α2,α3 ∈ [0,0.05] in advance.

• Then we use MLE to calibrate (α2,β2,θ ,α3,β3,ψ) with constraints α2,α3 ∈ [0,0.05].

The MLE estimate ϑ̂ml of ϑ is shown in Table 1, the values of ϑ̂ml have small changes to the
previous estimate ϑ̂ discussed in Figure 3, and the fitting effect is also similar.

In order to analyze the fitting effect in different regions, we consider square fit error in region
A⊆ [0,1]2 defined as

eA(C) =

(
1

m(A)

¨
A
|C(u,v)−Cemp(u,v)|2dudv

) 1
2

,

in which m(A) is the Lebesgue measure of set A, C is a fitted copula and Cemp is the empirical
copula. The errors of different copulas in different regions are shown in Table 2. From Table 2, we
can see that the fitted DM copulas CDm

ϑ̂
and CDm

ϑ̂ml
perform better in tail parts (in region [0,0.05]2 and

region [0.95,1]2) than the fitted Gaussian copula CN
ρ̂

. As for the central region [0.05,0.95]2, the
fit errors of DM copulas are close to the error of Gaussian copula. Hence these numerical results
support our idea of constructing DM copulas to model the tail parts more accurately.

5 Conclusion
This paper introduced Distorted Mix Method (DMM) for constructing copula functions by

combining the ideas of distortion and convex sum. The constructed DM copula can be very close

18



Table 2: Fit error eA(C) of different fitted copula C in different regions.

Region CN
ρ̂

CDm
ϑ̂

CDm
ϑ̂ml

[0,0.05]2 0.40% 0.06% 0.07%
[0.95,1]2 0.35% 0.07% 0.06%

[0.05,0.95]2 0.63% 0.70% 0.67%
[0,1]2 0.58% 0.64% 0.62%

to a given copula and has tail dependence as desired. Theoretical properties of the DM copula
were discussed by focusing on two tail dependence measures: tail dependence function and tail
dependence coefficients of marginal distributions. As an application, a tight bound for asymptotic
Value-at-Risk of order statistics was obtained under regular variation framework. Empirical results
showed that DM copula fits the empirical data of SPX 500 Index and FTSE 100 Index very well
both in central and tail parts.
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A The Proofs
Proof of Theorem 1. According to Assumption A, it is easy to verify that C̃(u1, . . .ud) has uniform
[0,1] margins. To prove C̃ is a d-dimensional copula function, we need to check the d-increasing
property. Since every Di j is increasing, the distorted component copulas Ci(Di1(u1), . . . ,Did(ud))
are all d-increasing. Therefore, C̃ is indeed a copula function.

The maximum difference between C and Ci can be estimated directly as

sup
(u1,u2,...,ud)∈[0,1]d

∣∣C̃(u1,u2, . . . ,ud)−Ci(u1,u2, . . . ,ud)
∣∣

≤ sup
(u1,u2,...,ud)∈[0,1]d

m

∑
k=1

αk |Ck(Dk1(u1), . . . ,Dkd(ud))−Ci(u1,u2, . . . ,ud)|

≤ sup
(u1,u2,...,ud)∈[0,1]d

αi |Ci(Di1(u1), . . . ,Did(ud))−Ci(u1,u2, . . . ,ud)|+∑
k 6=i

αk .

By using the Lipschitz property of copula function,

sup
(u1,u2,...,ud)∈[0,1]d

αi |Ci(Di1(u1), . . . ,Did(ud))−Ci(u1, . . . ,ud)| ≤
d

∑
j=1

sup
u j∈[0,1]

∣∣αiDi j(u j)−αiu j
∣∣

=
d

∑
j=1

sup
x∈[0,1]

∣∣∣∣∣(1−αi)x−∑
k 6=i

αkDk j(x)

∣∣∣∣∣≤ d

∑
j=1

∑
k 6=i

αk · sup
x∈[0,1]

∣∣x−Dk j(x)
∣∣≤ d

∑
j=1

∑
k 6=i

αk.

Combining all the inequalities above, we have

sup
(u1,u2,...,ud)∈[0,1]d

∣∣C̃(u1, . . .ud)−Ci(u1, . . . ,ud)
∣∣≤ d

∑
j=1

∑
k 6=i

αk +∑
k 6=i

αk = (1−αi)(d +1) ,

hence the proof of the inequality (2) is completed.
Before we prove the L1 inequality in (3), we need to prove that

ˆ 1

0

∣∣x−Di j(x)
∣∣dx≤ 1

2
(33)

for any i and j. Fixed i and j, we denote y = Di j(
1
2). If y≥ 1

2 , then

ˆ 1

0

∣∣x−Di j(x)
∣∣dx =

ˆ 1
2

0

∣∣x−Di j(x)
∣∣dx+

ˆ y

1
2

∣∣x−Di j(x)
∣∣dx+

ˆ 1

y

∣∣x−Di j(x)
∣∣dx

≤
ˆ 1

2

0
(y− x)dx+

ˆ y

1
2

(1− x)dx+
ˆ 1

y
(1− y)dx≤ 1

2
.
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For the case y < 1
2 , we have similar argument to prove (33). By using (33), we have

ˆ
[0,1]d

∣∣C̃(u1,u2, . . . ,ud)−Ci(u1,u2, . . . ,ud)
∣∣du1 . . .dud)

≤
ˆ
[0,1]d

m

∑
k=1

αk |Ck(Dk1(u1), . . . ,Dkd(ud))−Ci(u1,u2, . . . ,ud)|du1 . . .dud

≤αi

ˆ
[0,1]d
|Ci(Di1(u1), . . . ,Did(ud))−Ci(u1,u2, . . . ,ud)|du1 . . .dud +(1−αi)

≤
d

∑
j=1

ˆ 1

0
αi
∣∣Di j(x)− x

∣∣dx+(1−αi) =
d

∑
j=1

ˆ 1

0

∣∣∣∣∣∑k 6=i
αk
(
x−Dk j(x)

)∣∣∣∣∣dx+(1−αi)

≤d ·∑
k 6=i

αk

2
+(1−αi) = d(1−αi)/2+(1−αi) ,

so the proof is completed. �

Proof of Example 2. According to Corollary 1, we set S = {1,2,3} in (27), then we get β123 ≥ 0.
And we obtain β12 ≥ β123 by setting S = {1,2} in (27). Hence we have β23 ≥ β123 and β13 ≥ β123
by the same argument. Therefore, we know that 0≤ β123 ≤min{β12,β23,β13}.

On the other hand, we set S = {1} in (27), then we get 1− β12− β13 + β123 ≥ 0. Next we
set S = {2} and S = {3} again, we can derive β12 + β23 + β13−min{β12,β23,β13}− 1 ≤ β123.
Combining these results, we obtain the inequalities in (28). �

Proof of Theorem 4. Let i∗ = argmin1≤i≤k ∑
d−k+i
j=1 σδ

j /i, then we denote γ = ∑
d−k+i∗
j=1 σδ

j /i∗ =
min1≤i≤k ∑

d−k+i
j=1 σδ

j /i. Denote Fi,F(i) as the distribution functions of Xi,X(i) respectively. In the
next, we divide the proof into several steps.

Step 1. At first, we convert the conclusion into a distributional version. We will prove that

max
Xi∼µi+σi·X

limsup
x→∞

F̄(k)(x)/F̄X(x) = γ (34)

implies

max
Xi∼µi+σi·X

limsup
α↓0

VaR1−α [X(k)]

VaR1−α [X ]
= γ

1/δ . (35)

Actually, if limsupx→∞ F̄(k)(x)/F̄X(x)≤ γ , combining with the assumption that X varies regularly,
we derive that for any ε > 0,

limsup
α↓0

F̄(k)(VaR1−α [X(k)])

F̄X(VaR1−α [X(k)])
≤ γ ≤ γ + ε = lim

α↓0

F̄X(VaR1−α [X ])

F̄X((γ + ε)1/δ VaR1−α [X ])
. (36)

Then applying the fact limα↓0 F̄(k)(VaR1−α [X(k)])/F̄X(VaR1−α [X ]) = 1, from (36) we know that

limsup
α↓0

F̄X(VaR1−α [X(k)])

F̄X((γ + ε)1/δ VaR1−α [X ])
≥ 1 ,
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which implies limsupα↓0(γ + ε)1/δ VaR1−α [X ]/VaR1−α [X(k)] ≥ 1. Since ε is arbitrary, we can
conclude that limsupα↓0 VaR1−α [X(k)]/VaR1−α [X ] ≤ γ1/δ . Furthermore, by the same argument,
if a random vector (X1, . . . ,Xd) satisfies limx→∞ F̄(k)(x)/F̄X(x) = γ , we can also conclude that
limα↓0 VaR1−α [X(k)]/VaR1−α [X ] = γ1/δ . Hence we have proved that (34) implies (35), so in the
following we will prove (34).

Step 2. Denote C as the survival copula of X1, . . . ,Xd . We will prove

lim
x→∞

F̄(k)(x)/F̄X(x) = ∑
S⊆D,|S|≥k

eS(σ
δ
1 , . . . ,σ

δ
d ;C). (37)

According to the definition of eS(σ
δ
1 , . . . ,σ

δ
d ;C) in (17), we have

∑
S⊆D,|S|≥k

eS(σ
δ
1 , . . . ,σ

δ
d ;C)

= ∑
S⊆D,|S|≥k

lim
x→∞

P

⋂
i∈S

{F̄i(Xi)≤ σ
δ
i F̄X(x)}

⋂
j/∈S

{F̄j(X j)> σ
δ
j F̄X(x)}

/F̄X(x). (38)

On the other hand, it is easy to verify that

lim
x→∞

F̄(k)(x)/F̄X(x) = ∑
S⊆D,|S|≥k

lim
x→∞

P

⋂
i∈S

{Xi ≥ x}
⋂
j/∈S

{X j < x}

/F̄X(x). (39)

Comparing (38) with (39), we can derive∣∣∣∣∣ limx→∞

F̄(k)(x)
F̄X(x)

− ∑
S⊆D,|S|≥k

eS(σ
δ
1 , . . . ,σ

δ
d ;C)

∣∣∣∣∣
≤ ∑

S⊆D,|S|≥k
lim
x→∞

∑
d
i=1P

(
{Xi ≥ x}∆{F̄i(Xi)≤ σδ

i F̄X(x)}
)

F̄X(x)

= ∑
S⊆D,|S|≥k

lim
x→∞

d

∑
i=1

∣∣∣∣ F̄i(x)
F̄X(x)

−σ
δ
i

∣∣∣∣= 0,

where the last equality is due to

lim
x→∞

F̄i(x)/F̄X(x) = lim
x→∞

F̄X(
x−µi

σi
)/F̄X(x) = σ

δ
i , i = 1, . . . ,d. (40)

Hence the equality in (37) has been proved.

Step 3. We will prove that
lim
x→∞

F̄(k)(x)/F̄X(x)≤ γ. (41)

Let C be the survival copula of X1, . . . ,Xd . Recall the supplementary definition b(wi;C{i}) = wi for
i = 1, . . . ,d. According to the conclusion in (18), we know that

σ
δ
i = b(σδ

i ;C{i}) = ∑
S⊆D,i∈S

eS(σ
δ
1 , . . . ,σ

δ
d ;C), ∀ i = 1, . . . ,d.

23



Therefore, for any i ∈ {1, . . . ,k},

1
i

d−k+i

∑
j=1

σ
δ
j =

1
i

d−k+i

∑
j=1

∑
S⊆D,i∈S

eS(σ
δ
1 , . . . ,σ

δ
d ;C)

=
1
i ∑

S⊆D,S 6= /0
eS(σ

δ
1 , . . . ,σ

δ
d ;C)×|S∩{1,2, . . . ,d− k+ i}|

=
1
i ∑

S⊆D,S 6= /0
eS(σ

δ
1 , . . . ,σ

δ
d ;C)(|S|+d− k+ i−|S∪{1,2, . . . ,d− k+ i}|)

≥1
i ∑

S⊆D,S 6= /0
eS(σ

δ
1 , . . . ,σ

δ
d ;C)(|S|+d− k+ i−d)

≥ ∑
S⊆D,|S|≥k

eS(σ
δ
1 , . . . ,σ

δ
d ;C)

(|S|+ i− k)
i

≥ ∑
S⊆D,|S|≥k

eS(σ
δ
1 , . . . ,σ

δ
d ;C) = lim

x→∞
F̄(k)(x)/F̄d(x),

where the last equality is owing to (37). By the definition γ = min1≤i≤k ∑
d−k+i
j=1 σδ

j /i, we obtain
(41).

Step 4. We will prove the bound in (41) is tight. Setting wi = σδ
i for i = 1, . . . ,d and using the

parameters defined in (30),(31), we construct DM copulas C̃ by (21) in Theorem 3. Next we will
prove if the survival copula of X1, . . . ,Xd is the DM copula C̃, then the upper bound in (41) holds.

Firstly, we prove that
σ

δ
1 ≤ . . .≤ σ

δ
d−k+i∗ ≤ γ (42)

and
γ ≤ σ

δ
d−k+i∗+1 ≤ . . .≤ σ

δ
d when i∗ < k. (43)

Recall the assumption σ1 ≤ . . . ≤ σd . For the case i∗ < k, the definition γ = ∑
d−k+i∗
j=1 σδ

j /i∗ =
min1≤i≤k ∑

d−k+i
j=1 σδ

j /i implies that

d−k+i∗+1

∑
j=1

σδ
j

i∗+1
≥ γ,

this inequality can be simplified as γ ≤ σδ
d−k+i∗+1, hence (43) holds. On the other hand, for i∗ > 1,

by the definition of γ , we also know

d−k+i∗−1

∑
j=1

σδ
j

i∗−1
≥ γ,

which implies γ ≥ σδ
d−k+i∗ . And if i∗ = 1, then γ = ∑

d−k+1
j=1 σδ

j ≥ σδ
d−k+1. Therefore, we have

proved (42).
Secondly, we will prove that for any x ∈ [0,γ), x exactly belongs to different i∗ sets among

{R1, . . . ,Rd−k+i∗}. Recall the definitions γ =∑
d−k+i∗
j=1 σδ

j /i∗ and Ri =
[
∑

i−1
j=1 σδ

j , ∑
i
j=1 σδ

j

)
(modγ)
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for i = 1, . . . ,d− k+ i∗. Thus, for any x ∈ [0,γ), the i∗ numbers

{x, x+ γ, x+2γ, . . . ,x+(i∗−1)γ} ⊆ [0, i∗γ) =
d−k+i∗⋃

i=1

[
∑

i−1
j=1 σδ

j , ∑
i
j=1 σδ

j

)
.

Owing to the result in (42), the length of each interval among{[
∑

i−1
j=1 σδ

j , ∑
i
j=1 σδ

j

)
: i = 1, . . . ,d− k+ i∗

}
(44)

is smaller than γ . Hence the i∗ numbers {x, x+ γ, x+ 2γ, . . . ,x+(i∗− 1)γ} belong to different i∗

intervals among (44). Since Ri =
[
∑

i−1
j=1 σδ

j ,∑
i
j=1 σδ

j

)
(modγ) for i= 1, . . . ,d−k+ i∗, we conclude

that for any x ∈ [0,γ), x exactly belongs to different i∗ sets among {R1, . . . ,Rd−k+i∗}.
On the other hand, combining the result in (43) with the definition Ri = [0,σδ

i ), i = d−k+ i∗+
1, . . . ,d, we know that [0,γ)⊆ Ri for any i ∈ {d−k+ i∗+1, . . . ,d}. So for any x ∈ [0,γ), x exactly
belongs to different k sets among {R1, . . . ,Rd}, which implies

[0,γ)⊆
⋃

S⊆D,|S|=k

(⋂
i∈S Ri

⋂
j/∈S Rc

j

)
⊆

⋃
S⊆D,|S|≥k

(⋂
i∈S Ri

⋂
j/∈S Rc

j

)
. (45)

Note that ∩i∈SRi∩ j/∈S Rc
j is pairwise disjoint for S⊆D, S 6= /0. Combining with the definition of µS

in (31), we have

∑
S⊆D,|S|≥k

µS = ∑
S⊆D,|S|≥k

ml

(⋂
i∈S Ri

⋂
j/∈S Rc

j

)
≥ ml( [0,γ)) = γ. (46)

As the proof of Theorem 3 part (I), we know that µS = eS(σ
δ
1 , . . . ,σ

δ
d ;C̃) for S⊆D,S 6= /0 by setting

wi = σδ
i , i = 1, . . . ,d and comparing the definition in (20) with the expression in (19), Therefore,

from (37) we obtain

lim
x→∞

F̄(k)(x)/F̄d(x) = ∑
S⊆D,|S|≥k

eS(σ
δ
1 , . . . ,σ

δ
d ;C̃) = ∑

S⊆D,|S|≥k
µS ≥ γ. (47)

Combining the above results in Step 1 to Step 4, from (41) and (47) we get limx→∞ F̄(k)(x)/F̄X(x)=
γ . Then according to the proved relationship between (34) and (35), we can get the theorem. �
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